Chapter 7: Plate Tectonics

I. Continental-drift

- A. Alfred Wegener
 - 1. First proposed hypothesis, 1915
 - 2. Published The Origin of Continents and Oceans
- В. Wegener's continental drift hypothesis
 - Supercontinent called Pangaea began breaking apart about 200 million years ago
 - 2. Continents "drifted" to present positions
 - 3. Continents "broke" through the ocean crust
 - 4. Evidence used by Wegener
 - a. Fit of South America and Africa
 - b. Fossils
 - Rock structures c.

Glacial Deposits

- d. Ancient climates
- Main objection to Wegener's proposal was its inability to provide a mechanism for the movement of continents

II. Plate tectonics

More encompassing than continental drift A.

1940s - World War II

- B.
- Associated with Earth's rigid outer shell Harry Hess Officer on a Navy Destroyer Fathometer - depth gauge using sound Long Mountain chain ran down the middle

of the Atlantic Ocean - Mid Atlantic Ridge

- 1. Called the lithosphere
- 2. Consists of about 20 slabs (plates)
 - Plates are moving slowly a.
 - Largest plate is the Pacific plate b.
 - Plates are mostly beneath the ocean c.

C. Asthenosphere

- 1. Exists beneath the lithosphere
- 2. Hotter and weaker than lithosphere
- 3. Allows for motion of lithosphere

D. Plate boundaries

- Associated with plate boundaries
 - a. Seismic activity Earthquakes
 - b. Volcanism
 - c. Mountain building
- 2. Types of plate boundaries
 - a. Divergent (spreading) boundary Mid Atlantic Ridge

Divergent

Convergent

Transform

- Most exist along oceanic ridge crests
 - Seafloor spreading occurs along the boundary
 - a. Forms fractures (openings) on the ridge crests
 - b. Fractures fill with molten material
- 3. When the boundary occurs on a continent, rifts or rift valleys form Great Rift Valley Africa

Convergent boundary

- 1. Lithosphere is subducted into the mantle
- 2. Types of convergent boundaries
 - a. Oceanic-continental boundary

Continental Crust
Silica Rich Lower in Density
Mostly Granite
Lower Melting Temperature

- 1. Forms a subduction zone with a deep-ocean trench
- 2. Volcanic arcs form Mountain Ranges
 - a. e.g., Andes
 - b. e.g., Cascades
 - c. e.g., Sierra Nevada system

Oceanic Crust

Fe and Mg Rich Higher Density

Mostly Basalt

Higher Melting Temp

b. Oceanic-oceanic boundary

- 1. Often forms volcanoes on the ocean floor
- 2. Island arc forms as volcanoes emerge
 - a. e.g., Aleutian islands
 - b. e.g., Alaskan Peninsula
 - c. e.g., Philippines
 - d. e.g., Japan

- 1. Neither plate will subduct
- 2. Can produce mountains
 - a. e.g., Himalayas
 - Other possibilities
 - Alps
 - 2. Appalachians
 - 3. Urals

c. Transform boundary

- 1. Plates slide past one another
 - a. No new crust is created
 - b. No crust is destroyed
- 2. Transform faults
 - a. Most are in oceanic crust
 - b. Parallel the direction of plate movement
 - c. Aids in movement of crust material

Strike-Slip / Faulting

- E. Evidence that supports plate tectonics
 - 1. Paleomagnetism
 - a. Probably the most persuasive evidence
 - b. Ancient magnetism preserved in rocks
 - c. Paleomagnetic records show
 - Polar wandering (evidence that continents moved)
 - 2. Earth's magnetic field reversals
 - a. Recorded in the sea floor
 - b. Confirms seafloor spreading
 - 2. Earthquake patterns
 - a. Associated with plate boundaries
 - b. Deep-focus earthquakes along trenches provide a method for tracking the plate's descent
 - Ocean drilling
 - a. Deep Sea Drilling Project (ship: Glomar Challenger)
 - b. Age of deepest sediments
 - 1. Youngest are near the ridges
 - 2. Older are at a distance from the ridge
 - c. Ocean basins are geologically young
 - 4. Hot spots
 - a. Rising plumes of mantle material
 - b. Volcanoes can form over them
 - 1. e.g., Hawaiian Island chain
 - 2. Chains of volcanoes mark plate movement

B. Period of reverse magnetism

C. Period of normal magnetism

150-135 M.Y.A. Northern Continent - Laurasia Southern Continent - Gondwanaland

F. Breakup of Pangaea

- 1. Migrations of continents over the past 500 million years has been determined Terranes parts of old continents
- 2. Breakup begins about 200 million years ago
 - North America and Africa began separating between 200 and 165 million years ago
 - Africa and South America begin splitting apart about 135 million years ago
- 3.. Landmasses also had fragmented prior to the formation of Pangaea
- 4. Fragments that formed Pangaea began collecting between 500 and 225 million years ago
- G. Driving mechanism of plate tectonics
 - 1. No one model explains all plate motions
 - 2. Earth's heat is the driving force
 - 3. Several models have been proposed

Whole Mantle Convection

- a. Convection currents in mantle Boundary Layer Model
- Slab-pull and slab-push model
 - Descending oceanic crust pulls the plate
 - 2. Elevated ridge system pushes the plate
- c. Deep Layer Model
 - 1. Extend from mantle-core boundary
 - 2. Spread laterally under lithosphere

Plate Tectonics Map Activity

1) Trace the edges of all the plates (using the map on pages 200-201 and the laminated map) (Lightly trace in pencil)

(Look for features: trenches, rises, rifts, ridges, mountains)

- 2) Label the plates with their proper names (1st page of the notes) 20 total
- 3) Identify the plate boundary type

Eurasian

Antarctic

Indo-Austrailian

Philippine

Bismarck

Caroline

Soloman

Somolia

clipboard.bmp